• Pourquoi les astéroïdes qui s’approchent très près de la Terre n’ont pas la même couleur que les autres ? L’analyse de leur trajectoire fournit une explication.

    Parmi les astéroïdes, agrégats de roches en orbite autour du Soleil, certains arborent une couleur inattendue. Ils sont bien moins foncés et moins rouges que la plupart des autres. Une équipe internationale dirigée par Richard Binzel, de l’Institut de technologie du Massachusetts et de l’Observatoire de Paris, vient d’expliquer pourquoi dans la revue Nature : ces astéroïdes énigmatiques s’approcheraient si près de la Terre que leur surface serait complètement remaniée par d’intenses secousses sismiques (1).

    Photométrie. C’est dans les années 1970 que les premières observations photométriques des astéroïdes ont montré qu’une large part d’entre eux, situés dans la ceinture principale, c’est à dire entre Mars et Jupiter, étaient rouges. A l’époque, aucune explication satisfaisante n’avait été avancée. Ce n’est qu’en 1991, avec les premiers gros plans en couleur de l’astéroïde Gaspra par la sonde Galiléo, que l’hypothèse d’une altération des astéroïdes par le vent solaire a été émise: à force d’être soumis au flux de particules provenant du Soleil, les minéraux à la surface des astéroïdes subissent des modifications chimiques qui leur donne cette teinte rouge.

    Mais entre-temps, au milieu des années 1980, les observations de quelques astéroïdes proches de la Terre ont montré qu’ils n’avaient pas la même couleur que ces astéroïdes rouges. Et malgré des recherches minutieuses, ce type d’astéroïde restait inconnu dans la ceinture principale. Comment expliquer l’existence de tels astéroïdes paraissant indemnes de toute altération ? « La question s’est encore corsée l’an dernier, quand Richard Binzel a démontré que le processus de coloration lié au vent solaire devait prendre moins d’un million d’années. Car les astéroïdes plus jeunes que cela sont rarissimes », précise Alessandro Morbidelli, astronome à l’observatoire de Nice et l’un des auteurs de l’article publié dans Nature.

    Distance minimale. Pour élucider l’énigme, l’équipe menée par Richard Binzel a étudié 95 astéroïdes dont l’orbite croise celle de la Terre. Elle a analysé la trajectoire de ces « géocroiseurs » au fil du temps. Ils montrent qu’au cours des derniers 500 000 ans, ceux qui ne portent pas de trace d’altération -une vingtaine- sont tous passés suffisamment près de la Terre pour que leur surface soit remaniée par les effets de marée. Ces astronomes ont calculé qu’à moins d’une quinzaine de rayons terrestres, soit environ 95 000 kilomètres, la gravité terrestre a de tels effets.

     

    Pour comparaison, la Lune se situe à un peu plus de 380 000 kilomètres de la Terre. «C’est un résultat important, estime Patrick Michel, de l’observatoire de Nice. Pour le démontrer définitivement, il faudrait maintenant simuler le comportement d’un milieu granulaire – les astéroïdes sont faits d’un agrégat de matière et non d’un seul tenant – sous les effets de marée. » Ou attendre 2029 et le passage de l’astéroïde Apophis à 42 000 kilomètres de la Terre pour avoir une chance d’observer en direct le phénomène.

    Fabrice Demarthon

    (1) R. Binzel et al., Nature, 463, 331, 2010.

    http://www.larecherche.fr/content/actualite-astres/article?id=27369


    votre commentaire
  • Les bébés nés deux mois avant le terme distinguent la forme des objets par le toucher : ils ont une perception manuelle aussi développée que les bébés arrivés à terme.

    Lorsque l'on place un objet dans la main d'un nouveau-né, il la referme immédiatement. On a longtemps considéré que ce geste de préhension était un simple réflexe. Mais ces dix dernières années, plusieurs études ont montré que ce n'était pas le cas : dès la naissance, les bébés perçoivent leur environnement avec leurs mains et sont capables de distinguer les objets par leur forme, leur poids ou leur texture. Les régions cérébrales qui permettent l'exploration tactile sont donc déjà arrivées à maturation. Est-ce également le cas chez les bébés prématurés ?

    Pour le savoir Edouard Gentaz, du CNRS à Grenoble, et ses collègues ont étudié les facultés tactiles de 24 prématurés, nés environ deux mois avant le terme [1]. Ils ont utilisé une méthode expérimentale simple qui s'appuie sur un principe universel : le désintérêt progressif que nous manifestons pour un objet familier, et le regain d'attention que nous marquons pour un objet nouveau.

    Les psychologues ont d'abord placé dans une main de chaque bébé un petit objet en forme de prisme ou de cylindre. Dès que le nourrisson lâchait l'objet, ils le lui remettait dans la main et mesuraient la durée pendant laquelle il le conservait. Ils ont ainsi observé qu'au fil des essais le bébé gardait l'objet de moins en moins longtemps. Pour vérifier que cela n'était pas dû à la fatigue, ils ont ensuite présenté à la moitié des bébés un objet de forme différente, et à l'autre moitié le même objet. Résultat : les bébés confrontés au nouvel objet l'ont tenu plus longtemps que celui qu'ils connaissaient déjà. En revanche, le temps de tenue des autres bébés n'a pas augmenté. « Cela prouve effectivement que ces prématurés savent distinguer deux objets de formes différentes avec leur main, comme les enfants nés à terme, explique Olivier Houdé, de l’université Paris Descartes. Il ne s'agit pas de simples réflexes, mais d'un apprentissage par habituation et réaction à la nouveauté ».

    Les performances de ces prématurées ont ensuite été comparées avec celles de bébés nés à terme. Or leurs aptitudes manuelles étaient similaires, que ce soit avec la main droite ou avec la main gauche. Seule différence : les prématurés se désintéressaient plus rapidement de l'objet, probablement en raison d'une fatigue cognitive due à leur état. « Pour cette expérience d'exploration tactile, les régions sensori-motrices suffisent, précise Olivier Houdé. On savait qu'elles étaient les premières zones du cerveau à arriver à maturation, avant les régions préfrontales, liées au contrôle cognitif élaboré. Cette étude montre qu'elles sont déjà fonctionnelles à 7 mois de grossesse ».

    Chez les prématurés nés deux mois avant le terme, les fondements neurocognitifs de la catégorisation et de la géométrie sont donc déjà en place. Une découverte précieuse pour les professionnels de néonatalogie: « Ils pourront facilement reproduire ce type d'exercice actif d'apprentissage pour éveiller l'intelligence de ces bébés, à condition de ne pas trop les fatiguer », ajoute Olivier Houdé.

    Jacques Abadie

    [1] F. Lejeune et al., PloS One, 2, e9108, 2010.

    votre commentaire
  • Les longs cris de l'orang-outan mâle ne servent pas qu'à indiquer son identité à ses pairs. Ils véhiculeraient aussi des informations sur le contexte dans lequel ils ont été émis. Les femelles, en particulier, adapteraient leur réaction en conséquence.

    Marie-Neige Cordonnier

    Les orangs-outans disposent d'un riche répertoire de sons – vocaux ou non – pour communiquer. Parmi cet éventail, les longs cris sont l'apanage des mâles sexuellement matures. Précédées de grondements et conclues par des gargouillis, ces séries de puissantes vocalisations s'entendent à plus d'un kilomètre à la ronde. En analysant les caractéristiques acoustiques de ces cris chez trois orangs-outans de Bornéo, Brigitte Spillmann et ses collègues, de l'Université de Zurich, ont montré que leur structure temporelle et fréquentielle varie légèrement en fonction du contexte dans lequel ces cris sont émis. Les femelles perçoivent cette modulation, et adaptent leur réaction en conséquence.

    On savait déjà que chaque orang-outan a sa façon propre d'émettre ces longs cris, ce qui permet à ses pairs de l'identifier. On pensait ainsi que ces cris servaient d'une part à éloigner les mâles rivaux et, d'autre part, à attirer les femelles. L'étude des orangs-outans de Bornéo montre que la fonction de ces cris est peut-être plus vaste. Un mâle émet de tels cris plusieurs fois par jour (environ quatre fois le jour, un peu moins la nuit), et dans des situations diverses : il les utilise lorsqu'il est énervé, soit après avoir renversé un arbre mort, pour montrer sa force, soit en réponse à une perturbation issue de son environnement (en particulier la chute d'un arbre suivie du long cri d'un rival). Mais il les utilise aussi spontanément, sans qu'aucun stimulus extérieur n'ait été détecté.

    B. Spillmann et ses collaborateurs ont montré que, chez les trois orangs-outans de Bornéo, le débit d'émission des différentes unités de son composant le cri est plus rapide lorsque l'animal est énervé. Ils ont en outre observé que les femelles réagissent différemment à ces signaux, même lorsqu'elles sont trop loin pour avoir entendu la chute d'un arbre : celles dont les petits sont encore dépendants s'éloignent lorsqu'elles entendent un cri spontané, et ne réagissent pas au cri d'un orang-outan faisant suite à une perturbation environnementale. Les femelles sexuellement disponibles, en revanche, se dirigent vers les longs cris spontanés ; cependant, elles aussi ne réagissent pas aux cris poussés en réponse à une perturbation de l'environnement.

    Selon les chercheurs, les cris en réponse à une perturbation serviraient à éloigner les mâles rivaux ; les femelles sentent alors que le mâle est occupé à cette tâche et ne chercheraient pas à interférer. Les cris émis spontanément serviraient en revanche à attirer les femelles ; toutefois, les mâles bornéens s'accouplant souvent de force, celles ayant des petits à charge préféreraient s'éloigner.

    En décembre dernier, une équipe de l'Université de Rennes a mis en évidence l'existence d'une proto-langue chez la mone de Campbell, une espèce forestière de singes : les mâles combinent six types de cris pour délivrer divers messages. La modulation des longs cris de l'orang-outan bornéen serait-elle aussi une forme de proto-langue ?

    http://www.pourlascience.fr/ewb_pages/a/actualite-l-orang-outan-crie-la-femelle-passe-24750.php

    L’orang-outan crie, la femelle passe
    Shutterstock/Csaba Vanyi

    Un orang-outan de Bornéo.

    Pour en savoir plus

    B. Spillmann et al., Acoustic properties of long calls given by flanged male orang-utans (Pongo Pygmaeus Wormbii) reflect both individual identity and context, Ethology, sous presse.
    K. Ouattara et al., Campbell’s monkeys use affixation to alter call meaning, PLoS ONE, vo. 4, n°11, p. e7808, 2009.
    K. Ouattara et al., Generating meaning with finite means in Campbell’s monkeys, PNAS, vol. 106, n°51, pp. 22026-22031, 2009.
    A. Méguerditchian et J. Vauclair, Aux origines du langage, Cerveau&Psycho, n°17, 2006.

    L'auteur

    Marie-Neige Cordonnier est journaliste à Pour la science.

    votre commentaire
  • Un fossile raconte l'attaque, il y a quatre millions d'années, d'un dauphin par un requin.

    Loïc Mangin

    Souvenez-vous, en 1975, une musique angoissante et un grand aileron qui fend la surface de la mer étaient le prélude à la mort violente d'un inconscient qui a eu l'audace d'aller se baigner en mer : il sera au dîner du grand requin blanc, héros du film Les dents de la mer. Giovanni Bianucci, de l'Université de Pise, en Italie, et ses collègues ont reconstitué une histoire semblable – et vraie –, sauf qu'elle s'est déroulée il y a quatre millions d'années !

    La victime est ici un dauphin Astadelphis gastaldii, de 2,8 mètres de longueur, dont le fossile, bien conservé, a été découvert dans des sédiments du Pliocène dans le Piémont, au Nord de l'Italie. Le squelette était entreposé depuis un siècle dans un musée de Turin. L'analyse de traces de dents sur les côtes et sur les vertèbres a permis de reconstituer le scénario de l'attaque. D'abord, la forme et la taille des marques démasquent l'assaillant : un requin de quatre mètres de longueur, de l'espèce Cosmopolitodus hastalis. Le prédateur aurait attaqué le dauphin en venant sur lui par dessous et par la droite. Ce type d'attaque évite au requin d'être repéré par le sonar du cétacé, dirigé vers l'avant : cette stratégie a toujours cours aujourd'hui chez les prédateurs des dauphins, tels les grands requins blancs.

    Le requin aurait éventré sa victime, en mordant une partie de la cage thoracique et de l'abdomen. Cependant, le dauphin se serait débattu, obligeant l'agresseur à lâcher prise. Ensuite, probablement mort ou au moins en état de choc, le cétacé aurait roulé sur lui-même et aurait été mordu une seconde fois, de façon moins prononcée, près de l'aileron dorsal. Enfin, le requin n'aurait pas consommé sa proie, laissant le corps à des charognards, requins plus petits ou poissons, qui auraient laissé le squelette intact. Quelques marques, notamment sur la mâchoire inférieure du dauphin, confirment cette dernière hypothèse.

    L'histoire racontée par ce fossile de dauphin est un des rares cas bien documentés de relations entre animaux disparus.

    http://www.pourlascience.fr/ewb_pages/a/actualite-i-les-dents-de-la-mer-i-l-ancetre-24753.php

    <i>Les dents de la mer</i> : l’ancêtre
    © G. Bianucci

    Il y a quatre millions d’années, un requin Cosmopolitodus hastalis a attaqué un dauphin Astadelphis gastaldii.

    à voir aussi

    © Palaeontology
    L’analyse des traces de dents (en rouge) sur le fossile d’un dauphin a permis de reconstituer l’attaque du requin (les pointillés bleus indiquent la mâchoire) : le prédateur est venu d'en dessous, à la droite de la proie.
    © Palaeontology
    Le fossile du dauphin Astadelphis gastaldii.
    © Palaeontology
    Les traces de dents laissées par le requin sur les côtes du dauphin
    © Palaeontology
    Les traces de dents laissées par le requin sur les vertèbres du dauphin.

    L'auteur

    Loïc Mangin est rédacteur en chef adjoint à Pour la Science.

    Pour en savoir plus

    G. Bianucci et al., Killing in the Pliocene: shark attack on a dolphin from Italy, Palaeontology, vol. 53, pp. 457-470, 2010.

    votre commentaire
  • Fossil finger points to new human species

    DNA analysis reveals lost relative from 40,000 years ago.

    In the summer of 2008, Russian researchers dug up a sliver of human finger bone from an isolated Siberian cave. The team stored it away for later testing, assuming that the nondescript fragment came from one of the Neanderthals who left a welter of tools in the cave between 30,000 and 48,000 years ago. Nothing about the bone shard seemed extraordinary.

    A finger bone found in Denisova Cave in Siberia could add a branch  to the human family tree.A finger bone found in Denisova Cave in Siberia could add a branch to the human family tree.B. VIOLA

    Its genetic material told another story. When German researchers extracted and sequenced DNA from the fossil, they found that it did not match that of Neanderthals — or of modern humans, which were also living nearby at the time. The genetic data, published online in Nature1, reveal that the bone may belong to a previously unrecognized, extinct human species that migrated out of Africa long before our known relatives.

    "This really surpassed our hopes," says Svante Pääbo, senior author on the international study and director of evolutionary genetics at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. "I almost could not believe it. It sounded too fantastic to be true."

    Researchers not involved in the work applauded the findings but cautioned against drawing too many conclusions from a single study. "With the data in hand, you cannot claim the discovery of a new species," says Eske Willerslev, an evolutionary biologist and director of the Centre for GeoGenetics at the University of Copenhagen.

    “I almost could not believe it. It sounded too fantastic to be true.”


    If further work does support the initial conclusions, the discovery would mark the first time that an extinct human relative had been identified by DNA analysis. It would also suggest that ice-age humans were more diverse than had been thought. Since the late nineteenth century, researchers have known that two species of Homo — Neanderthals and modern humans — coexisted during the later part of the last ice age. In 2003, a third species, Homo floresiensis, was discovered on the island of Flores in Indonesia, but there has been no sign of this tiny 'hobbit' elsewhere. The relative identified in Siberia, however, raises the possibility that several Homo species ranged across Europe and Asia, overlapping with the direct ancestors of modern people.

    The Siberian site in the Altai Mountains, called Denisova Cave, was already known as a rich source of Mousterian and Levallois artefacts, two styles of tool attributed to Neanderthals. For more than a decade, Russian scientists from the Institute of Archaeology and Ethnology in Novosibirsk have been searching for the toolmakers' bones. They discovered several bone specimens, handling each potentially important new find with gloves to prevent contamination with modern human DNA. The bones' own DNA could then be extracted and analysed.

    When the finger bone was discovered, "we didn't pay special attention to it", says archaeologist Michael Shunkov of the Novosibirsk institute. But Pääbo had established a relationship with the Russian team years before to gather material for genetic testing from ice-age humans. After obtaining the bone, the German team extracted the bone's genetic material and sequenced its mitochondrial DNA (mtDNA) — the most abundant kind of DNA and the best bet for getting an undegraded sequence from ancient tissue.

    After re-reading the mtDNA sequences an average of 156 times each to ensure accuracy, the researchers compared them with the mtDNA genomes of 54 modern humans, a 30,000-year-old modern human found in Russia and six Neanderthals. The Denisova Cave DNA fell into a class of its own. Although a Neanderthal mtDNA genome differs from that of Homo sapiens at 202 nucleotide positions on average, the Denisova Cave sample differed at an average of 385 positions.

    The differences imply that the Siberian ancestor branched off from the human family tree a million years ago, well before the split between modern humans and Neanderthals. If so, the proposed species must have left Africa in a previously unknown migration, between that of Homo erectus 1.9 million years ago and that of the Neanderthal ancestor Homo heidelbergensis, 300,000 to 500,000 years ago.

    Study author Johannes Krause, also at the Max Planck Institute in Leipzig, says that the researchers are now generating nuclear DNA sequences from the bone with the hope of sequencing its entire genome. If they are successful, it would be the oldest human genome sequenced, eclipsing that of the 4,000-year-old Eskimo from Greenland that Willerslev and his colleagues reported last month2.

    A complete genome might also enable the researchers to give the proposed new species a formal name. They had originally planned to do so on the basis of the mtDNA genome. But they opted to wait until more bones are found — or until the DNA gives a clearer picture of its relationship to modern humans and Neanderthals.

    Willerslev emphasizes that, on its own, the mtDNA evidence does not verify that the Siberian find represents a new species because mtDNA is inherited only from the mother. It is possible that some modern humans or Neanderthals living in Siberia 40,000 years ago had unusual mtDNA, which may have come from earlier interbreeding among H. erectus, Neanderthals, archaic modern humans or another, unknown species of Homo. Only probes of the nuclear DNA will properly define the position of the Siberian relative in the human family tree.

     

    Anthropologists also want to see more-refined dating of the sediments and a better description of the finger bone itself. "I haven't seen a picture of the bone, and would like to," says Owen Lovejoy, an anthropologist at Kent State University in Ohio. "The stratigraphic age for the bone is 30,000 to 48,000 years old, but the mtDNA age could be as old as H. erectus," says Lovejoy. "That doesn't tell us much about human evolution unless it truly represents a surviving ancient species."

    The cave has yielded few clues about the culture of the Siberian hominin, although a fragment of a polished bracelet with a drilled hole was found earlier in the same layer that yielded the bone3.

    Pääbo suspects that other human ancestors — and new mysteries — may emerge as geneticists grind up more ancient bones for sequencing. "It is fascinating that molecular studies make a contribution in palaeontology where there is little or no morphology preserved," he says. "It is clear we stand just in the beginning of many fascinating developments."

    • References

      1. Krause, J. et al. Nature doi:10.1038/nature08976 (2010).
      2. Rasmussen, M. et al. Nature 463, 757-762 (2010). | Article | PubMed | ChemPort |
      3. Derevianko, A., Shunkov, M. & Volkov, P. Archaeol. Ethnol. Anthropol. Eurasia 34, 13-25 (2008).

    http://www.nature.com/news/2010/100324/full/464472a.html

    No Bones about It: Ancient DNA from Siberia Hints at Previously Unknown Human Relative

    For the first time, researchers describe a new type of human ancestor on the basis of DNA rather than anatomy

    By Kate Wong   

    SIBERIAN SURPRISE: DNA retrieved from a fossil found in Denisova Cave, located in the Altai Mountains, belongs to a previously unknown form of human. The excavation field camp is visible in this view from above the cave.

     

    For much of the past five million to seven million years over which humans have been evolving, multiple species of our forebears co-existed. But eventually the other lineages went extinct, leaving only our own, Homo sapiens, to rule Earth. Scientists long thought that by 40,000 years ago H. sapiens shared the planet with only one other human species, or hominin: the Neandertals. In recent years, however, evidence of a more happening hominin scene at that time has emerged. Indications that H. erectus might have persisted on the Indonesian island of Java until 25,000 years ago have surfaced. And then there's H. floresiensis—the mini human species commonly referred to as the hobbits—which lived on Flores, another island in the Indonesian archipelago, as recently as 17,000 years ago.

    Now researchers writing in the journal Nature report that they have found a fifth kind of hominin that may have overlapped with these species. (Scientific American is part of Nature Publishing Group.) But unlike all the other known members of the human family, which investigators have described on the basis of the morphological characteristics of their bones, the new hominin has been identified solely on the basis of its DNA.

    Johannes Krause and Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and their colleagues obtained the DNA from a fossilized pinky finger bone found at Denisova Cave in the Altai Mountains of southern Siberia. The species was impossible to determine from the shape and size of the bone—it simply did not contain any diagnostic morphological traits. But there were good reasons to believe it came from a Neandertal or an early modern human. For one, the bone was recovered from a stratigraphic layer of the cave dated to between 50,000 and 30,000 years ago that contained artifacts belonging to the so-called Middle Paleolithic and Upper Paleolithic industries associated with these two groups. For another, Neandertals and modern humans were the only hominins known to have lived in this region during that time period. But the DNA the team extracted from the Denisova pinky bone turned out to be markedly different from DNA sequences previously obtained from early modern humans and Neandertals.

    The researchers focused on a type of DNA known as mitochondrial DNA (mtDNA). Mitochondria are the power plants of the cell, and they have their own DNA that is separate from that housed in the cell nucleus and is passed down from mother to offspring. Because each cell has thousands of mitochondria, but only a single nucleus, mitochondrial DNA is much more abundant than nuclear DNA and is therefore more likely than the latter to be preserved in fossilized bone. To date, scientists have sequenced the mitochondrial genomes of both Neandertal and early modern human individuals, and the sequences for the two groups are quite distinctive.

    Comparing the order of the genetic "letters"—or base-pairs, as they are termed—making up the Denisova mtDNA with the sequences of modern day humans and an early modern human, Krause and his collaborators found that the Denisova mtDNA differed from humans today in nearly twice as many letter positions as Neandertal mtDNAs do. Further analysis indicated that the most recent common mtDNA ancestor of the Denisova individual, Neandertals and modern humans dates to around a million years ago (making it twice as old as the most recent common mtDNA ancestor of Neandertals and moderns). This divergence date, the team says, indicates that the Denisova mtDNA is distinct from that of the H. erectus population that left Africa 1.9 million years ago, and also from that of the Neandertal ancestor H. heidelbergensis, which branched off from the lineage leading to modern humans around 466,000 years ago. As such, the researchers contend the Denisova mtDNA reveals a previously unrecognized migration out of Africa by a hitherto unknown group of hominins. (The team is holding off on giving the creature a formal name for now, but informally they refer to it as X-woman.)

    "The data that they provide is certainly of the nature to arrive at the conclusions that they do," comments Stephan Schuster of The Pennsylvania State University, who worked on the recent sequencing of Archbishop Desmond Tutu's nuclear genome as well as the nuclear genome sequencing of a woolly mammoth. "All the detected sequence differences clearly indicate that this is a novel variant of a [hominin]."

    Paleoanthropologist Ian Tattersall of the American Museum of Natural History in New York City noted that the finding should not necessarily come as a surprise. "We know the fossil record is far from complete, but what we have already shows that the [hominin] evolutionary bush is quite luxuriantly branching," he remarks. "One more branch is not something that ought to give us indigestion."

    The association of the mystery hominin with those Middle and Upper Paleolithic artifacts is peculiar though, because elsewhere in Eurasia they have only turned up with Neandertal and modern human remains. Krause notes that it is possible that the pinky bone originated in an older, deeper layer of the cave sediments and over time got mixed in with the overlying artifacts. Thus far, however, there is no evidence for extensive perturbation. Another possibility, he says, is that the finger bone is that of an early modern human who carried an ancient mtDNA as a result of interbreeding between his or her ancestors and this previously unknown hominin group.

    But other experts are not so sure about the team's interpretation of their data. "I don't know—and nobody else does—how many base-pair changes make a new species," says Erik Trinkaus of Washington University in Saint Louis, an authority on Neandertals and early modern humans. "I would like to have more than the number of mtDNA base pair differences to go on."

    "The result doesn't mean that they've found a new species, and I don't believe it requires a separate pre-Neandertal migration out of Africa," argues John Hawks of the University of Wisconsin–Madison, whose research focuses on human genetic evolution. "Those explanations are both compatible with the result, but I don’t think the data require them yet." Hawks notes that the history of an mtDNA sequence—which is just a tiny fraction of a person's total DNA—does not necessarily reflect the history of a species.

    A comparably distinctive nuclear genome sequence would significantly strengthen the claim that the Denisova mtDNA represents a previously unknown type of hominin. To that end, Krause and Pääbo are launching a Denisova genome project to obtain a full nuclear genome sequence from the bone that yielded the novel mtDNA. Comparisons of this genome with the full genome sequence they have obtained for the Neandertal as well as with the genomes of people living today could yield insights into the genetic changes that defined H. sapiens. "At the end we get more information about the big question [of] what makes humans humans," Krause reflects.

    Meanwhile, paleoanthropologists are eager for more fossils to confirm the DNA-based claim. With luck, continued excavation at Denisova cave this summer will turn up additional remains—and put a face on this long-lost relative.

    http://www.scientificamerican.com/article.cfm?id=new-hominin-species

    L'homme de Denisova, nouveau cousin ?

    Une troisième espèce humaine, contemporaine de l'homme de Néandertal et de l'homme moderne, aurait été identifiée par les gènes contenus dans un os de la main découvert en Sibérie.

    François Savatier

    Out of Africa ? Oui, l'espèce humaine a essaimé à partir de l'Afrique, mais quand ? Un fossile daté d'environ 40000 ans retrouvé en Sibérie complique l'énigme : le séquençage des gènes qu'il contenait suggère qu'il appartient à un hominidé, qui n'était ni un Néandertalien ni un homme moderne.

    Le fossile provient de l'Altaï sibérien, et plus précisément de la grotte de Denisova, une grande cavité très riche en traces et artefacts préhistoriques, car elle a été occupée pendant 125 000 ans. Johannes Krause et ses collègues, de l'Institut Max-Planck de Leipzig et de diverses universités européennes et américaines, viennent de séquencer entièrement l'ADN mitochondrial contenu dans l'un des rares fossiles humains de la grotte de Denisova, un os isolé appartenant à un doigt.

    L'ADN mitochondrial est issu des mitochondries, des organites cellulaires. Il contient environ 16 000 bases. Pour analyser le génome mitochondrial de la nouvelle espèce, les chercheurs ont appliqué une méthode d'amplification spécifique de séquences d'ADN (PCR modifiée), mise au point récemment pour séquencer l'ADN mitochondrial des Néandertaliens sans craindre les contaminations.

    La comparaison de la séquence obtenue – la séquence complète de l'ADN mitochondrial de l'individu – a révélé qu'elle différait trop de l'ADN mitochondrial des Néandertaliens et des hommes modernes pour qu'on puisse conclure que l'individu séquencé appartenait à l'une de ces espèces. Or le fragment osseux provient d'une strate de la grotte datée entre 48 000 et 30 000 ans avant le présent… Ainsi, à une époque où des hommes modernes et des hommes de Néandertal vivaient en Sibérie, le bout de doigt de Denisova suggère fortement qu'une troisième espèce humaine y vivait aussi ! Chose remarquable, ce serait la première fois qu'une espèce humaine est découverte seulement à partir de ses gènes.

    Mais de quelle espèce s'agit-il ? Les ancêtres des Néandertaliens et des hommes modernes ont divergé en Afrique, il y a environ 450 000 ans, avant que certains de leurs descendants ne quittent le continent, il y a quelque 250 000 ans pour les premiers et 100 000 ans pour les seconds. Les chercheurs ont établi un nouvel arbre phylogénétique du genre Homo intégrant la nouvelle espèce probable. L'ancêtre commun des Néandertaliens, de l'homme moderne et de l'homme de Denisova aurait vécu il y a environ un million d'années. Dans ce cas, il est impossible que l'homme de Denisova descende de Homo erectus, puisque celui-ci a migré vers l'Eurasie 900 000 ans avant que ne vive cet ancêtre commun, soit il y a 1,9 million d'années. Il semble donc qu'une vague humaine passée inaperçue jusqu'à aujourd'hui aurait quitté l'Afrique il y a un million d'années environ.

    Cette découverte est plus qu'inattendue, et certains préhistoriens répugnent encore à la considérer comme certaine sur la seule base de l'ADN mitochondrial. Pour mieux apprécier la distance génétique entre la probable nouvelle espèce, Homo neanderthalensis et Homo sapiens, les chercheurs ont entrepris d'extraire de l'ADN nucléaire de l'os du doigt. Toutefois, pour vraiment convaincre les préhistoriens, il faudrait leur trouver un fossile plus complet d'homme de Denisova...


    http://www.pourlascience.fr/ewb_pages/a/actualite-l-homme-de-denisova-nouveau-cousin-24778.php
    L'homme de Denisova, nouveau cousin ?
    Johannes Krause/Institut Max-Planck

    La grotte de Denisova est située dans un endroit sauvage de l'Altaï sibérien. Elle a été occupée par des hommes durant 125 000 ans et contient de nombreuses traces de leurs passages, dont quelques fragments de fossiles humains.

    L'auteur

    François Savatier est rédacteur à Pour la Science.

    à voir aussi

    François Savatier/Pour la Science
    L'ancêtre commun aux deux espèces humaines connues et à la nouvelle espèce découverte dans la grotte de Denisova aurait vécu il y a un million d'années environ.

    Pour en savoir plus

    J. Krause et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia, prépublication en ligne, Nature, 24 mars 2010, .

     


    votre commentaire



    Suivre le flux RSS des articles
    Suivre le flux RSS des commentaires