• nouvelle communication cellulaire

    http://www.larecherche.fr/content/actualite-vie/article?id=29811

     

    Les bactéries communiquent grâce à des nanotubes

    Ces bactéries Bacillus subtilis, cultivées sur un milieu solide, sont connectées les unes aux autres par des nanotubes membranaires. Ceux-ci, permettent le passage de grosses molécules. Les bactéries sont ici observées par microscopie électronique. © Gyanendra Dubey & Sigal Ben-Yehuda / Hebrew University of Israel
    Des bactéries d’espèces différentes échangent des protéines et de l’ADN via des nanotubes. La découverte pourrait bouleverser l’approche des interactions bactériennes.

    Les bactéries ne cessent d’interagir les unes avec les autres. Par exemple, en libérant des molécules qui agissent comme des signaux sur les bactéries voisines. Ou encore, en entrant en contact grâce à un pilus, un tube protéique très fin qui permet le passage d’ADN. 

    Mais le mode de communication que viennent de découvrir Sigal Ben-Yehuda et Gyanendra Dubey, de l’université hébraïque de Jérusalem, est très différent : il s’agit de larges tubes membranaires capables de véhiculer non seulement de l’ADN, mais aussi de grosses protéines [1] . Une découverte qui, si elle est confirmée par d’autres équipes, constituerait une forme de communication totalement nouvelle.

    « C’était accidentel », raconte Sigal Ben-Yehuda. En scrutant des bactéries Bacillus subtilis placées sur son microscope à fluorescence, la chercheuse fait une observation surprenante : certaines bactéries, modifiées génétiquement pour exprimer une protéine fluorescente nommée GFP, semblent transmettre leur brillance à leurs voisines, qui, elles, ne possèdent pas le gène de la GFP.

    Intriguée, elle met au point une série d’expériences destinées à comprendre ce phénomène. Elle constate que des bactéries fixées sur des supports solides construisent entre elles des nanotubes capables de transférer de grosses protéines comme la GFP, ainsi que de l’ADN. Qui plus est, ce type d’échange a lieu même entre bactéries d’espèces différentes, par exemple Bacillus subtilis et Staphylococcus aureus. Les images en microscopie électronique montrent de multiples connexions tubulaires entre bactéries voisines, de 30 à 130 nanomètres de large et d’environ un micromètre de long. Des connexions à l’intérieur desquelles on peut même détecter des molécules de GFP préalablement marquées.

    La chercheuse s’interroge : ces tunnels peuvent-ils véhiculer des protéines de résistance aux antibiotiques ? Avec Gyanendra Dubey, elle cultive deux lignées bactériennes, l’une résistante à l’antibiotique chloramphenicol, l’autre à la lyncomycine. Mises en présence des deux antibiotiques, les deux lignées survivent si elles sont cultivées ensemble, alors que séparément, elles s’éteignent.

    Molécules de résistance

    C’est la preuve qu’elles se transmettent l’une l’autre des molécules leur permettant de résister de façon transitoire. Pour Philippe Noirot, spécialiste de génétique microbienne à l’Institut national de la recherche agronomique : « Si ce phénomène est aussi général que les auteurs le suggèrent, il expliquerait des résistances aux antibiotiques observées chez des bactéries qui n’ont pourtant pas le matériel génétique nécessaire. C’est une découverte stimulante. »

    La publication, accueillie avec un enthousiasme teinté de prudence, suscite de nombreuses questions. Le transport de protéine est-il passif ou actif ? Unidirectionnel ou bidirectionnel ? Les bactéries choisissent-elles leur partenaire ? Quelles substances sont véhiculées ? À Jérusalem, Sigal Ben-Yehuda tente désormais de déterminer les bases génétiques des nanotubes et de visualiser en temps réel le transfert de protéines d’une bactérie à l’autre.

    Anne Debroise

    http://www.cell.com/retrieve/pii/S009286741100016X

    Cell, Volume 144, Issue 4, 590-600, 18 February 2011
    Copyright © 2011 Elsevier Inc. All rights reserved.
    10.1016/j.cell.2011.01.015

    Highlights
    • Intercellular nanotubes bridge neighboring bacterial cells
    • Cytoplasmic molecules are exchanged between neighbors via nanotubes
    • Cells acquire new hereditary and nonhereditary features by molecular exchange
    • Nanotubes provide a network for molecular exchange within and between species

    Summary

    Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.

    Authors

     


  • Commentaires

    Aucun commentaire pour le moment

    Suivre le flux RSS des commentaires


    Ajouter un commentaire

    Nom / Pseudo :

    E-mail (facultatif) :

    Site Web (facultatif) :

    Commentaire :